If it's not what You are looking for type in the equation solver your own equation and let us solve it.
34u^2+47u=0
a = 34; b = 47; c = 0;
Δ = b2-4ac
Δ = 472-4·34·0
Δ = 2209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2209}=47$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(47)-47}{2*34}=\frac{-94}{68} =-1+13/34 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(47)+47}{2*34}=\frac{0}{68} =0 $
| 34u^2+47u=- | | 2(x+4)-5(x-3)=3 | | -2(x+7)-10=3(x+3)-5x | | 3(4x–3)=99 | | 68=6y-(-2) | | q/3+-42=-50 | | x+7=7(1+4x) | | -4/5b=13 | | 7.31x+14.62=29.24 | | -29=m/7+-23 | | 3t+7=41 | | 6x+4=150 | | -17+10c=-57 | | 2x+35x-15=180 | | -2(x+7)-10=3(x+3-5x | | 5x-5x=84 | | 2c-(-16=34 | | 3x^2+6x-2=10 | | 3x÷4+16x÷4=38 | | Y-2=1.3333333333(y+6) | | 33+-5p=-27 | | 4/8x-12=1/x3 | | b=3/5 | | 33/10x=-5 | | 3x-15=17x | | 1x-5x=84 | | -33=20y+5 | | X=100000+0.6y | | 3√6x-12+1=1 | | -67=-19+6f | | -15(2r=3)=3(11-4r)-58 | | c/9-67=-58 |